首页> 外文OA文献 >A Heterogeneous System Architecture for Low-Power Wireless Sensor Nodes in Compute-Intensive Distributed Applications
【2h】

A Heterogeneous System Architecture for Low-Power Wireless Sensor Nodes in Compute-Intensive Distributed Applications

机译:计算密集型分布式应用中低功耗无线传感器节点的异构系统架构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wireless Sensor Networks (WSNs) combine embedded sensing and processing capabilities with a wireless communication infrastructure, thus supporting distributed monitoring applications. WSNs have been investigated for more than three decades, and recent social and industrial developments such as home automation, or the Internet of Things, have increased the commercial relevance of this key technology. The communication bandwidth of the sensor nodes is limited by the transportation media and the restricted energy budget of the nodes. To still keep up with the ever increasing sensor count and sampling rates, the basic data acquisition and collection capabilities of WSNs have been extended with decentralized smart feature extraction and data aggregation algorithms. Energy-efficient processing elements are thus required to meet the ever-growing compute demands of the WSN motes within the available energy budget. \ud\udThe Hardware-Accelerated Low Power Mote (HaLoMote) is proposed and evaluated in this thesis to address the requirements of compute-intensive WSN applications. It is a heterogeneous system architecture, that combines a Field Programmable Gate Array (FPGA) for hardware-accelerated data aggregation with an IEEE 802.15.4 based Radio Frequency System-on-Chip for the network management and the top-level control of the applications. To properly support Dynamic Power Management (DPM) on the HaLoMote, a Microsemi IGLOO FPGA with a non-volatile configuration storage was chosen for a prototype implementation, called Hardware-Accelerated Low Energy\udWireless Embedded Sensor Node (HaLOEWEn). As for every multi-processor architecture, the inter-processor communication and coordination strongly influences the efficiency of the HaLoMote. Therefore, a generic communication framework is proposed in this thesis. It is tightly coupled with the DPM strategy of the HaLoMote, that supports fast transitions between active and idle modes. Low-power sleep periods can thus be scheduled within every sampling cycle, even for sampling rates of hundreds of hertz.\ud\udIn addition to the development of the heterogeneous system architecture, this thesis focuses on the energy consumption trade-off between wireless data transmission and in-sensor data aggregation. The HaLOEWEn is compared with typical software processors in terms of runtime and energy efficiency in the context of three monitoring applications. The building blocks of these applications comprise hardware-accelerated digital signal processing primitives, lossless data compression, a precise wireless time synchronization protocol, and a transceiver scheduling for contention free information flooding from multiple sources to all network nodes. Most of these concepts are applicable to similar distributed monitoring applications with in-sensor data aggregation.\ud\udA Structural Health Monitoring (SHM) application is used for the system level evaluation of the HaLoMote concept. The Random Decrement Technique (RDT) is a particular SHM data aggregation algorithm, which determines the free-decay response of the monitored structure for subsequent modal identification. The hardware-accelerated RDT executed on a HaLOEWEn mote requires only 43 % of the energy that a recent ARM Cortex-M based microcontroller consumes for this algorithm. The functionality of the overall WSN-based SHM system is shown with a laboratory-scale demonstrator. Compared to reference data acquired by a wire-bound laboratory measurement system, the HaLOEWEn network can capture the structural information relevant for the SHM application with less than 1 % deviation.
机译:无线传感器网络(WSN)将嵌入式传感和处理功能与无线通信基础设施结合在一起,从而支持分布式监视应用程序。对无线传感器网络进行了超过三十年的研究,最近的社会和工业发展,例如家庭自动化或物联网,已经增加了该关键技术的商业意义。传感器节点的通信带宽受到传输介质和节点能量预算的限制。为了跟上不断增长的传感器数量和采样率,WSN的基本数据采集和收集功能已通过分散的智能特征提取和数据聚合算法进行了扩展。因此需要高能效的处理元件,以在可用能量预算内满足WSN节点不断增长的计算需求。本文提出并评估了硬件加速低功耗微粒(HaLoMote),以解决计算密集型WSN应用程序的需求。它是一种异构系统体系结构,将用于硬件加速数据聚合的现场可编程门阵列(FPGA)与基于IEEE 802.15.4的射频片上系统相结合,用于网络管理和应用程序的顶级控制。为了在HaLoMote上正确支持动态电源管理(DPM),选择了具有非易失性配置存储的Microsemi IGLOO FPGA作为原型实现,称为硬件加速低能耗\ ud无线嵌入式传感器节点(HaLOEWEn)。对于每种多处理器体系结构,处理器间的通信和协调都强烈影响HaLoMote的效率。因此,本文提出了一种通用的通信框架。它与HaLoMote的DPM策略紧密结合,该策略支持活动模式和空闲模式之间的快速转换。因此,即使在数百赫兹的采样率下,也可以在每个采样周期内安排低功耗的睡眠时间。\ ud \ ud除了异构系统体系结构的发展之外,本文重点研究无线数据之间的能耗权衡。传输和传感器内数据聚合。在三个监视应用程序的环境下,HaLOEWEn与典型的软件处理器在运行时间和能效方面进行了比较。这些应用程序的构建块包括硬件加速的数字信号处理原语,无损数据压缩,精确的无线时间同步协议,以及用于从多个源向所有网络节点进行无竞争信息泛洪的收发器调度。这些概念中的大多数适用于具有传感器内数据聚合的类似分布式监视应用程序。\ ud \ udA结构健康监视(SHM)应用程序用于HaLoMote概念的系统级评估。随机减量技术(RDT)是一种特殊的SHM数据聚合算法,它确定受监视结构的自由衰减响应,以进行后续的模态识别。在HaLOEWEn微粒上执行的硬件加速RDT仅需要最近基于ARM Cortex-M的微控制器为此算法消耗的能量的43%。带有实验室规模的演示器显示了整个基于WSN的SHM系统的功能。与有线实验室测量系统获取的参考数据相比,HaLOEWEn网络可以以不到1%的偏差捕获与SHM应用相关的结构信息。

著录项

  • 作者

    Engel, Andreas;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号